资源类型

期刊论文 127

会议视频 2

年份

2023 12

2022 5

2021 8

2020 2

2019 3

2018 6

2017 13

2016 14

2015 4

2014 3

2013 6

2012 5

2011 4

2010 6

2009 3

2008 5

2007 11

2006 2

2005 1

2004 3

展开 ︾

关键词

原子力显微镜 4

发展战略 4

技术预见 3

力常数 2

对策建议 2

战略研究 2

波浪力 2

海洋工程 2

混凝土 2

键能 2

键长 2

2035年 1

360°表征 1

Casimir力 1

Lorentz 1

PPWS 1

三星一线 1

三点弯曲梁 1

三维原子力显微镜 1

展开 ︾

检索范围:

排序: 展示方式:

Simulation analysis of pressure regulation of hydraulic thrust system on a shield tunneling machine

Zhibin LIU, Haibo XIE, Huayong YANG

《机械工程前沿(英文)》 2011年 第6卷 第3期   页码 377-382 doi: 10.1007/s11465-011-0226-y

摘要:

Hydraulic thrust system is an important system in a shield tunneling machine. Pressure regulation of thrust cylinders is the most important function for thrust system during tunnel excavation. In this paper, a hydraulic thrust system is explained, and a corresponding simulation model is carried out in order to study the system characteristics. Pressure regulation of a certain group’s cylinders has little influence on regulation of the other groups’ cylinders. The influence will not affect the process much during tunnel excavation. Pump displacement may have a greater effect on pressure regulation and oil supply flow rate should be adaptive to the system’s demand. A exacting situation is simulated to explain how pressure regulation works during tunnel excavation.

关键词: tunnel     hydraulic thrust system     pressure regulation     simulation    

Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber reinforced plastics

Guofeng MA, Renke KANG, Zhigang DONG, Sen YIN, Yan BAO, Dongming GUO

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 538-546 doi: 10.1007/s11465-020-0598-y

摘要: Carbon fiber reinforced plastic (CFRP) composites are extremely attractive in the manufacturing of structural and functional components in the aircraft manufacturing field due to their outstanding properties, such as good fatigue resistance, high specific stiffness/strength, and good shock absorption. However, because of their inherent anisotropy, low interlamination strength, and abrasive characteristics, CFRP composites are considered difficult-to-cut materials and are prone to generating serious hole defects, such as delamination, tearing, and burrs. The advanced longitudinal–torsional coupled ultrasonic vibration assisted drilling (LTC-UAD) method has a potential application for drilling CFRP composites. At present, LTC-UAD is mainly adopted for drilling metal materials and rarely for CFRP. Therefore, this study analyzes the kinematic characteristics and the influence of feed rate on the drilling performance of LTC-UAD. Experimental results indicate that LTC-UAD can reduce the thrust force by 39% compared to conventional drilling. Furthermore, LTC-UAD can decrease the delamination and burr factors and improve the surface quality of the hole wall. Thus, LTC-UAD is an applicable process method for drilling components made with CFRP composites.

关键词: longitudinal–torsional coupled     ultrasonically drilling     CFRP     thrust force     hole quality    

在推力和阻力作用下飞行器横向振动分析

宋健

《中国工程科学》 2000年 第2卷 第10期   页码 63-72

摘要:

文章重点讨论了推力和空气阻力对火箭横向振动频率和振型的影响,分析了在推力和阻力作用下频率降低的原因,给出了推力对振型频率影响的估计式。发动机喷管与火箭固联时的横向运动方程式及其相应的边界条件是分析工作的基础。文中得到的主要结论适用于主动加速段、被动减速段和推力与阻力平衡时的巡航段。在小推力和小轴向过载的情况下,各种不同的计算方法所得的结果相差不大。在大推力和高过载情况下,不同的近似解与精确解的差别可能是很大的。

关键词: 飞行器     火箭     横向振动     推力与阻力     振型与频率    

Modeling limit force capacities of high force to volume lead extrusion dampers

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 609-622 doi: 10.1007/s11709-021-0724-x

摘要: Lead extrusion dampers are supplemental energy-dissipation devices that are used to mitigate seismic structural damage. Small volumetric sizes and high force capacities define high-force-to-volume (HF2V) devices, which can absorb significant response energy without sacrificial damage. However, the design of such devices for specific force capacities has proven difficult based on the complexities of their internal reaction mechanisms, leading to the adoption of empirical approaches. This study developed upper- and lower-bound force capacity estimates from analytical mechanics based on direct and indirect metal extrusion for guiding design. The derived equations are strictly functions of HF2V device geometric parameters, lead material properties, and extrusion mechanics. The upper-bound estimates from direct and indirect extrusion are denoted as (FUB,1, FUB,2) and (FUB,3, FUB,4), respectively, and the lower-bound estimates are denoted as (FLB, FLB,1) based on the combination of extrusion and friction forces. The proposed models were validated by comparing the predicted bounds to experimental force capacity data from 15 experimental HF2V device tests. The experimental device forces all lie above the lower-bound estimates (FLB, FLB,1) and below the upper-bound estimates (FUB,1, FUB,2, FUB,4). Overall, the (FLB, FUB,2) pair provides wider bounds and the (FLB,1, FUB,4/FUB,1) pair provides narrower bounds. The (FLB,1, FUB,1) pair has a mean lower-bound gap of 36%, meaning the lower bound was 74% of the actual device force on average. The mean upper-bound gap was 33%. The bulge area and cylinder diameter of HF2V devices are key parameters affecting device forces. These relatively tight bounds provide useful mechanics-based predictive design guides for ensuring that device forces are within the targeted design range after manufacturing.

关键词: extrusion     lead dampers     upper and lower bound     analytical modelling     limit force    

Quality control based on electrode displacement and force in resistance spot welding

Chuntao JI, Lipeng DENG

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 412-417 doi: 10.1007/s11465-010-0114-x

摘要: The behaviors of electrode displacement and force during spot welding under various conditions, such as different weld currents, electrode forces, and welding times, were studied. Tests were conducted on a 170?kVA MFDC spot welder. Data were collected via a multichannel high-speed data acquisition system and were analyzed with MATLAB. Behaviors of 5182 aluminum and mild steel in spot welding were compared. Results show that nugget expansion rate does not reach zero for aluminium as it does for mild steel as nugget grew to a certain size. A linear relationship is found between the nugget size and maximum expansion that facilitates online weld quality evaluation. An electrode force peak is observed and believed relevant to the sufficient nugget size.

关键词: aluminum     electrode displacement     electrode force     nugget size     data acquisition    

Visualization of force networks in 2D dense granular materials

Jianguo LIU, Qicheng SUN, Feng JIN,

《结构与土木工程前沿(英文)》 2010年 第4卷 第1期   页码 109-115 doi: 10.1007/s11709-010-0003-8

摘要: Dense granular matter is a conglomeration of discrete solid and closely packed particles. As subjected to external loadings, the stress is largely transmitted by heavily stressed chains of particles forming a sparse network of larger contact forces. To understand the structure and evolution of force chains, a photoelastic technique was improved for determining stresses and strains in the assemblies of photoelastic granular disks in this paper. A two-dimensional vertical slab was designed. It contains 7200 polydispersed photoelastic disks and is subjected to a localized probe penetrating at the top of the slab to mimic the cone penetration test. The interparticle contact force distribution was found a peak around the mean value, a roughly exponential tail for greater force and a dip toward zero for smaller force. The force chain network around the probe tip was depicted, and the contact angle distribution of particles in force chains was found to be well aligned in the directions of major principal stress.

关键词: granular matter     force chain     multiscale modeling    

Motion/force transmission indices of parallel manipulators

Xinjun LIU, Chao WU, Fugui XIE

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 89-91 doi: 10.1007/s11465-011-0215-1

Applications of atomic force microscopy in immunology

Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang

《医学前沿(英文)》 2021年 第15卷 第1期   页码 43-52 doi: 10.1007/s11684-020-0769-6

摘要: Cellular mechanics, a major regulating factor of cellular architecture and biological functions, responds to intrinsic stresses and extrinsic forces exerted by other cells and the extracellular matrix in the microenvironment. Cellular mechanics also acts as a fundamental mediator in complicated immune responses, such as cell migration, immune cell activation, and pathogen clearance. The principle of atomic force microscopy (AFM) and its three running modes are introduced for the mechanical characterization of living cells. The peak force tapping mode provides the most delicate and desirable virtues to collect high-resolution images of morphology and force curves. For a concrete description of AFM capabilities, three AFM applications are discussed. These applications include the dynamic progress of a neutrophil-extracellular-trap release by neutrophils, the immunological functions of macrophages, and the membrane pore formation mediated by perforin, streptolysin O, gasdermin D, or membrane attack complex.

关键词: cellular mechanics     atomic force microscopy     neutrophil extracellular trap     macrophage phagocytosis     pore formation    

Non-convex sparse optimization-based impact force identification with limited vibration measurements

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0762-2

摘要: Impact force identification is important for structure health monitoring especially in applications involving composite structures. Different from the traditional direct measurement method, the impact force identification technique is more cost effective and feasible because it only requires a few sensors to capture the system response and infer the information about the applied forces. This technique enables the acquisition of impact locations and time histories of forces, aiding in the rapid assessment of potentially damaged areas and the extent of the damage. As a typical inverse problem, impact force reconstruction and localization is a challenging task, which has led to the development of numerous methods aimed at obtaining stable solutions. The classical 2 regularization method often struggles to generate sparse solutions. When solving the under-determined problem, 2 regularization often identifies false forces in non-loaded regions, interfering with the accurate identification of the true impact locations. The popular 1 sparse regularization, while promoting sparsity, underestimates the amplitude of impact forces, resulting in biased estimations. To alleviate such limitations, a novel non-convex sparse regularization method that uses the non-convex 12 penalty, which is the difference of the 1 and 2 norms, as a regularizer, is proposed in this paper. The principle of alternating direction method of multipliers (ADMM) is introduced to tackle the non-convex model by facilitating the decomposition of the complex original problem into easily solvable subproblems. The proposed method named 12-ADMM is applied to solve the impact force identification problem with unknown force locations, which can realize simultaneous impact localization and time history reconstruction with an under-determined, sparse sensor configuration. Simulations and experiments are performed on a composite plate to verify the identification accuracy and robustness with respect to the noise of the 12-ADMM method. Results indicate that compared with other existing regularization methods, the 12-ADMM method can simultaneously reconstruct and localize impact forces more accurately, facilitating sparser solutions, and yielding more accurate results.

关键词: impact force identification     inverse problem     sparse regularization     under-determined condition     alternating direction method of multipliers    

Shape and topology optimization for tailoring the ratio between two flexural eigenfrequencies of atomic force

Qi XIA,Tao ZHOU,Michael Yu WANG,Tielin SHI

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 50-57 doi: 10.1007/s11465-014-0286-x

摘要:

In an operation mode of atomic force microscopy that uses a higher eigenmode to determine the physical properties of material surface, the ratio between the eigenfrequency of a higher flexural eigenmode and that of the first flexural eigenmode was identified as an important parameter that affects the sensitivity and accessibility. Structure features such as cut-out are often used to tune the ratio of eigenfrequencies and to enhance the performance. However, there lacks a systematic and automatic method for tailoring the ratio. In order to deal with this issue, a shape and topology optimization problem is formulated, where the ratio between two eigenfrequencies is defined as a constraint and the area of the cantilever is maximized. The optimization problem is solved via the level set based method.

关键词: atomic force microscopy     cantilever probe     eigenfrequency     optimization    

on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force

Xudong WANG,Miao ZHOU,Xiaorong MENG,Lei WANG,Danxi HUANG

《环境科学与工程前沿(英文)》 2016年 第10卷 第4期 doi: 10.1007/s11783-016-0855-9

摘要: pH values of the BSA solution significantly impact the process of membrane fouling. Dramatic flux decline is caused by membrane–BSA adhesion force at start of filtration. XDLVO theory shows the polar or Lewis acid–base interaction plays a major role in membrane fouling. To further determine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration (UF) membranes over a range of pH values, self-made atomic force microscopy (AFM) colloidal probes were used to detect the adhesion forces of membrane–BSA and BSA–BSA, respectively. Results showed that the membrane–BSA adhesion interaction was stronger than the BSA–BSA adhesion interaction, and the adhesion force between BSA–BSA-fouled PVDF/PVA membranes was similar to that between BSA–BSA-fouled PVDF/PVP membranes, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and BSA. At the same pH condition, the PVDF/PVA membrane–BSA adhesion force was smaller than that of PVDF/PVP membrane–BSA, which illustrated that the more hydrophilic the membrane was, the better antifouling ability it had. The extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory predicts that the polar or Lewis acid–base (AB) interaction played a dominant role in the interfacial free energy of membrane–BSA and BSA–BSA that can be affected by pH. For the same membrane, the pH values of a BSA solution can have a significant impact on the process of membrane fouling by changing the AB component of free energy.

关键词: PVDF membrane     Membrane fouling     Adhesion force     Protein     Interfacial free energy    

Nonlinear sealing force of a seawater balance valve used in an 11000-meter manned submersible

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0726-y

摘要: Balance valve is a core component of the 11000-meter manned submersible “struggle,” and its sealing performance is crucial and challenging when the maximum pressure difference is 118 MPa. The increasing sealing force improves the sealing performance and increases the system’s energy consumption at the same time. A hybrid analytical–numerical–experimental (ANE) model is proposed to obtain the minimum sealing force, ensuring no leakage at the valve port and reducing energy consumption as much as possible. The effects of roundness error, environmental pressure, and materials on the minimum sealing force are considered in the ANE model. The basic form of minimum sealing force equations is established, and the remaining unknown coefficients of the equations are obtained by the finite element method (FEM). The accuracy of the equation is evaluated by comparing the independent FEM data to the equation data. Results of the comparison show good agreement, and the difference between the independent FEM data and equation data is within 3% when the environmental pressure is 0–118 MPa. Finally, the minimum sealing force equation is applied in a balance valve to be experimented using a deep-sea simulation device. The balance valve designed through the minimum sealing force equation is leak-free in the experiment. Thus, the minimum sealing force equation is suitable for the ultrahigh pressure balance valve and has guiding significance for evaluating the sealing performance of ultrahigh pressure balance valves.

关键词: seawater balance valve     sealing performance     hybrid ANE model     FEM     minimum sealing force equation    

bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow force

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-023-0747-1

摘要: Capacitive sensors are efficient tools for biophysical force measurement, which is essential for the exploration of cellular behavior. However, attention has been rarely given on the influences of external mechanical and internal electrical interferences on capacitive sensors. In this work, a bionic swallow structure design norm was developed for mechanical decoupling, and the influences of structural parameters on mechanical behavior were fully analyzed and optimized. A bionic feather comb distribution strategy and a portable readout circuit were proposed for eliminating electrostatic interferences. Electrostatic instability was evaluated, and electrostatic decoupling performance was verified on the basis of a novel measurement method utilizing four complementary comb arrays and application-specific integrated circuit readouts. An electrostatic pulling experiment showed that the bionic swallow structure hardly moved by 0.770 nm, and the measurement error was less than 0.009% for the area-variant sensor and 1.118% for the gap-variant sensor, which can be easily compensated in readouts. The proposed sensor also exhibited high resistance against electrostatic rotation, and the resulting measurement error dropped below 0.751%. The rotation interferences were less than 0.330 nm and (1.829 × 10−7)°, which were 35 times smaller than those of the traditional differential one. Based on the proposed bionic decoupling method, the fabricated sensor exhibited overwhelming capacitive sensitivity values of 7.078 and 1.473 pF/µm for gap-variant and area-variant devices, respectively, which were the highest among the current devices. High immunity to mechanical disturbances was maintained simultaneously, i.e., less than 0.369% and 0.058% of the sensor outputs for the gap-variant and area-variant devices, respectively, indicating its great performance improvements over existing devices and feasibility in ultralow biomedical force measurement.

关键词: micro-electro-mechanical system capacitive sensor     bionics     operation instability     mechanical and electrical decoupling     biomedical force measurement    

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0720-4

摘要: Aerospace aluminum alloy is the most used structural material for rockets, aircraft, spacecraft, and space stations. The deterioration of surface integrity of dry machining and the insufficient heat transfer capacity of minimal quantity lubrication have become the bottleneck of lubrication and heat dissipation of aerospace aluminum alloy. However, the excellent thermal conductivity and tribological properties of nanofluids are expected to fill this gap. The traditional milling force models are mainly based on empirical models and finite element simulations, which are insufficient to guide industrial manufacturing. In this study, the milling force of the integral end milling cutter is deduced by force analysis of the milling cutter element and numerical simulation. The instantaneous milling force model of the integral end milling cutter is established under the condition of dry and nanofluid minimal quantity lubrication (NMQL) based on the dual mechanism of the shear effect on the rake face of the milling cutter and the plow cutting effect on the flank surface. A single factor experiment is designed to introduce NMQL and the milling feed factor into the instantaneous milling force coefficient. The average absolute errors in the prediction of milling forces for the NMQL are 13.3%, 2.3%, and 7.6% in the x-, y-, and z-direction, respectively. Compared with the milling forces obtained by dry milling, those by NMQL decrease by 21.4%, 17.7%, and 18.5% in the x-, y-, and z-direction, respectively.

关键词: milling     force     nanofluid minimum quantity lubrication     aerospace aluminum alloy     nano biological lubricant    

重庆武隆“五一”滑坡成因分析

王建锋,李世海,燕琳,董大鹏

《中国工程科学》 2002年 第4卷 第4期   页码 22-28

摘要:

分析了边坡工程地质条件和地质成因机制;根据现场调查数据建立了滑坡地质剖面,反演了滑坡发生时滑动面的抗剪强度参数;分析了原坡形及降雨所引起孔隙水压力对其稳定性的影响,并以反演获得的强度参数结合类似边坡岩体结构面强度试验统计结果,对原边坡进行了可靠度分析,获得了原边坡的潜在破坏概率,从而又在定量角度上获得了滑坡发生的原因。

关键词: 武隆滑坡     可靠度     反分析     剩余推力法     边坡稳定性    

标题 作者 时间 类型 操作

Simulation analysis of pressure regulation of hydraulic thrust system on a shield tunneling machine

Zhibin LIU, Haibo XIE, Huayong YANG

期刊论文

Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber reinforced plastics

Guofeng MA, Renke KANG, Zhigang DONG, Sen YIN, Yan BAO, Dongming GUO

期刊论文

在推力和阻力作用下飞行器横向振动分析

宋健

期刊论文

Modeling limit force capacities of high force to volume lead extrusion dampers

期刊论文

Quality control based on electrode displacement and force in resistance spot welding

Chuntao JI, Lipeng DENG

期刊论文

Visualization of force networks in 2D dense granular materials

Jianguo LIU, Qicheng SUN, Feng JIN,

期刊论文

Motion/force transmission indices of parallel manipulators

Xinjun LIU, Chao WU, Fugui XIE

期刊论文

Applications of atomic force microscopy in immunology

Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang

期刊论文

Non-convex sparse optimization-based impact force identification with limited vibration measurements

期刊论文

Shape and topology optimization for tailoring the ratio between two flexural eigenfrequencies of atomic force

Qi XIA,Tao ZHOU,Michael Yu WANG,Tielin SHI

期刊论文

on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force

Xudong WANG,Miao ZHOU,Xiaorong MENG,Lei WANG,Danxi HUANG

期刊论文

Nonlinear sealing force of a seawater balance valve used in an 11000-meter manned submersible

期刊论文

bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow force

期刊论文

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological

期刊论文

重庆武隆“五一”滑坡成因分析

王建锋,李世海,燕琳,董大鹏

期刊论文